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Phase synchronization of diffusively coupled Rssler oscillators with funnel attractors
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Recently, amantiphasephase-synchronized state in a system of diffusively couplessRp oscillators has
been reportedGang Huet al, Phys. Rev. Lett85, 3377(2000]. In the current paper this antiphase state is
explored in detail. Our interests are concentrated on the comparison with the nioHpladse phase-
synchronized state for phase-coherent oscillators and the effect of the lattice size. Our main resultgiare that
this antiphase synchronization is only for funnelsRier attractors and cannot be observed in a system of
coupled phase-coherent oscillata(is) it can be observed only for intermediate values of the lattice size while
it disappears for quite low or large values of the lattice size; @l it is different from the in-phase
phase-synchronized state of phase-coherent oscillators in many respects.
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I. INTRODUCTION Il. BASIC MODEL
. . ) . A. The ring of oscillators
Chaos means that two trajectories starting from slightly ) o ) _
different initial conditions will separate exponentially as time _ 1€ model that we are interested in is a chain of diffu-
goes or{1]. A fascinating recent finding is that trajectories of SIVe!Y coupled Resler oscillators on a ring structure. It can
such wild chaotic systems can be synchronized if they arge written as a set of ordinary differential equations,
properly coupled togethd®]. Initially, the main interest of

Xi=—wyi—z+eX1tX-1—2X),
almost all researchers was focused on the case of coupled

identical chaotic unit§2—4]. Interesting phenomena such as Vi=wXi+ayi+e(Yir1+Yio1—2Yi), (1
on-off intermittency 3] and riddled basing4] are found near
the transition to the synchronized state. Most recently, the 2,=0.4+(x— 8.5z + €(z,,1+2_1—27),

case of coupled nonidentical unif§—8| has attracted the ) )
attention of researchers due to the fact that parameter mid/ith Xi+n=Xi, Yi+n=Yi, Zin=2. Herei=1,... Nisthe
matches and stochastic perturbations are inevitable in reffdex of the lattice sitew; is the natural frequency of an
physical experiments and technical applications. Amoni”d'v'dual osqllator, and; represents _the coupling strength.
such work, Rosenblum, Pikovsky, and Kurths showed th n the following, th_e lattice size is f|>_<ed a¥=6 and the
effect of phase synchronization of weakly coupled self-"atural frequency is set ta=1 for i=1,... N except

sustained chaotic oscillatoisy—9]. They generalized the Wh‘Ie'LeeOth?arrr\\/:':g?Zei:% eﬂ;'g“%;:g'gﬁ_fﬁém from the one
classic notion of phase locking for periodic oscillators and. P g

defined phase synchronization for autonomous chaotic osci n Ref. 10]. We prefer this parameter setting because it is
P y opularly used in the literature especially in the study of the

lators as the appearance of certain relations between the, oo synchronization of Rsler oscillator§7—-9,11]. There-
phases of interacting systems. This phenomenon has begfle one can easily compare the present work with previous

extensively studied both theoretically and experimen{@lly  \york on phase synchronization and see the differences and
Moreover[10], Hu et al. reported a study of a chain of connection among them.

diffusively coupled Resler oscillators organized on a ring
structure. The phenomenon aftiphasephase synchroniza- B. Phase-coherent attractor and funnel attractor

tion of chaotic oscillators was found. It is different from the The parameten determines the topology of the” Bsler
previously reported resulfsl1] where onlyin-phasephase  gyractor. In changing the value af two kinds of attractor,
synchronization was found for chaotic oscillators. In the Cur'namely phase-coherent and funnel attractors, can be ob-
rent paper, this antiphase phase synchronization f@sRD  erved(Fig. 1). The critical value for the transition between
oscillators is studied in detail and the results obtained arg,em is found to be,=0.21. Fora=0.15<a,, the attractor

presented. following this structure. In Sec. Il, the m_odel ofis oriented so that its projection on the plamey() exhibits a
coupled Rssler oscillators studied is presented._The in-phasghase flow circulating around the origin. This is the phase-
state for phase-coherent attractors and the antiphase state [Q§erent attractor. Its phase can be simply defined as

funnel attractors are shown. In Sec. lll, the bifurcation to the

antiphase state is characterized using both local and global y

variables. The relation with the Lyapunov exponent spectrum ¢=arctart . 2

is also presented. A rough phase diagram is sketched. In Sec.

IV, the effects of the lattice size and the inhomogeneity inTwo such oscillators are said to be phase synchronized if
natural frequencies are studied. Finally, the paper is contheir phases satisfy the condition |im.|¢;(t)— ¢;(t)|
cluded with a short discussion. <const.
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20 ' . ' ' case shown in Fig. (#) is with e=0.05. Starting from ran-
dom initial conditions and following transients, the oscilla-

. tors self-organize into a state with a preferred phase lag be-
tween neighbor oscillators, i.e., with;  ;— @$;=27/N.

i Filled circles that denote oscillators’ positions span the whole
attractor. As time increases, this self-organized structure ro-
tates around the origin while the phase lags among neighbor
oscillators are kept nearly constant. In the plot, the attractor
for the oscillator on sité =1 is shown in gray. Under cou-

10

%'20 ' ' ' ' pling, it behaves like a phase-coherent oscillator and the tra-
0 ' ' ' ' jectory avoids visiting the neighborhood of the origin.
& @ J y g g g
or 1T ° . | I1l. BIFURCATION TO THE ANTIPHASE STATE
ol 1t i h To characterize the change in the state of coupled oscilla-
%/ tors here, we define a quantity
(] [ )
-10 4 1 F 1 1 N 1/2
SO=15 2 [0+ (=94 (z-2%) Q)
20 o o 10  20-20 -10 0 10 20

X with Yz(l/N)Ei“lei , and so on. As a state of the coupled
. oscillators is represented by a phase point in the
FIG. 1. (a) Phase-coherent attractor wih=0.15 and(b) funnel 3N-dimensional phase spac#}) can be viewed as the dis-

at_tractor witha=0.25 in a single F'és_sler oscillatfor withorltdcm:{ tance from this point to the diagon&il=xj Y=Y, andz,
pling. (c) In-phase phase synchronized state for coupled phase- z; for anyi andj. The average valus) and the standard
coherent oscillators with=0.15 and(d) antiphase phase synchro-

nized state for coupled funnel oscillators wit=0.25. Here deviation(s) over a long trajectory will be used to distin-

positions of oscillators are denoted by filled black circles and thengh.the in-phase an(_j antiphase states. For an in-phase syn-
attractor for the oscillator on siie=1 is shown in gray. chronized state, the difference between the states of oscilla-

tors is relatively small and the average distan® is
expected to be small also. However, in the case of an an-

Wh h is | h =0.21, th -
en the paramett is larger thana,=0.21, the topo diphase synchronized state, this average dista(syebe-

ogy of the Rssler attractor becomes quite complex and th )
phase flow is no longer oriented. The phase for this funnefOmes quite large due to the aimost constant phase lag. For a

attractor cannot be simply defined as for a phase—cohereﬁpmpletely desynchroni_zeq state, oscillatqrs can occasionally
attractor, but it is well known that for any autonomous Sys_aggregate together, which induces a relatively small value of

tem there exists a marginally stable variable corresponding t8(t)- They also have the chance to span the whole phase
the zero-value Lyapunov exponent. In general this variabl&Pac€, which leads to a largét). This intermittency causes

can be viewed as the phase for the attractor of this autondS), for the desynchronized state, to take an intermediate
mous system although sometimes its value is difficult to deYa/ue between those of the antiphase and in-phase states. The
termine; for instance, for the funnel Beler oscillator. Re- Standard deviatiow(s) is expected to be large here.

cently a method for calculating the value of this phase N Fig. 2, the evolution ofs) anda(s) with the coupling

variable has been reported that does not depend on the top&ir€ngthe and the bifurcation diagram for the variablgare
ogy of the attractof12]. plotted. In order to trace the bistable branches, for every

coupling the end state of the last coupling is used as the
starting state for the current coupling. Results for increasing
and decreasing are shown in the same figure. Weak noise is
The in-phase state for a chain of phase-coheressRo used to destroy the unstable state. A large hysteresis loop is
oscillators is shown in Fig. (t) where all oscillators start found for 0.05% €< 0.093. This was studied thoroughly in
from random initial conditions. After a transient period, all of Ref.[10]. Here, we focus our attention on the bifurcation to
them approach a nearly identical phase value, i.e., witlthe antiphase phase synchronized state. It can be seen that,
|¢i—#;|~0. The snapshot distribution of oscillators is when e increases from zerd;s) and o(s) decrease gradu-
highly localized in the phase space. As time increases, thially. This shows the trend to an in-phase synchronized state
localized cloud of phase points rotates around the origin. Iras the coupling becomes stronger. At abet0.045, (s)
the plot, positions of oscillators are denoted by filled circlessuddenly jumps to a quite large value which corresponds to
while the attractor for the oscillator on site1 is shown in  the switch to the antiphase branch. The relatively small value
gray. The coupling strength usedds-0.005. In comparing of o(s) implies that the degree of synchronization for the
to an uncoupled oscillator, no obvious change in the attractoantiphase state is higher than in the former in-phase branch.
for the oscillator on sité=1 can be seen. In Sec. Il, we showed that in the antiphase synchronized
Fora=0.25, the chain of oscillators has an antiphase statstate a single oscillator behaves like a phase-coherent one
for the coupling strengtla in the interval[0.045,0.093. The  although its parametexis in the funnel regime. Therefore, a

C. In-phase and antiphase states
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FIG. 2. Bifurcation diagram for the oscillator on site 1 with t

(a) increasing andb) decreasing coupling strengéh Evolution of

the variableg's) and o(s) with € is shown in(c) and (d).

FIG. 3. Temporal evolution ofa) the average distanda), (b)
the variablex, for the oscillator on the sité=1, and(c) phase
differencesA ¢; ;1= ¢;.1— ¢; . Here the coupling strength is

bifurcation in the local dynamic is expected on increasing the- g o445
coupling strength. In Fig. (@), the value ofx; on the Poin-

care intersectiony, =0 is plotted with increasing:. At €  coupled funnel oscillators studied here, we expect the an-
=0.045, the one-band chaos suddenly shrinks in size to fiphase phase synchronization to happen when five of the six
two-band one. This is coincident with the time for the Sudderkero_vahje Lyapunov exponents become negative with 0n|y
jump in (s). This confirms our conjecture that there is agne left. The synchronized state should be a hyperchaotic
coupling-induced bifurcation from a funnel attractor to astate with N positive Lyapunov exponents and one zero

phase-coherent one accompanying the transition to the apyapunov exponent. Numerical calculation shows that this is

tiphase state.

not the case: With increasing, some of the zero-value

A large peak ino(s) appears prior to the bifurcation to | yapunov exponents became negative gradually and some of

the antiphase state. This is caused by the intermittency ac-
companying the transition: As is slightly smaller than the 0.002
critical value 0.045, the chain of oscillators erratically
switchs between segments of in-phase states and antiphas
states(see Fig. 3 In the in-phase segmentés) takes a
relatively small value, the local dynamic for a single oscilla-
tor is a one-band chaos, and phase differenrfzese; . , be-
tween neighbor oscillators diffuse randomly. In the antiphase
segments(s) has a large nonzero value, the attractor for a<< 0
single site is a two-band chaotic one, and the phase differ-
ences¢; — ¢;. 1 stay almost constant. With increasing cou-

pling strength, antiphase segments appear more and mor _ggp1
frequently, and their average length diverges at the transitior
to the antiphase state.

Now we study the Lyapunov exponent spectrum for the
coupled oscillators on increasing the coupling strength
The 12 largest Lyapunov exponents are plotted in Fig. 4. For
e=0, without coupling, six of them are positive and the
other six are zero corresponding to the free phases for au -0.003

0.001

-0.002

0.025

0.05

tonomous oscillators. For two coupled phase-coherent oscil- e 0.075
lators, the phase synchronization occurs at the moment when
one of the zero Lyapunov exponents becomes negéfijve FIG. 4. Lyapunov exponent spectrum for coupled funnel oscil-

This means that one of the phase variables is no longer frelators with increasing coupling strength. Heeg=0.023 ande,

and is locked to another. If this picture is still correct for the =0.045.
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FIG. 5. Phase diagram for coupled $ter oscillators. The 0 0.05 0.1 0.15 0.2
dashed line marks the transition from a phase-coherent to a funnel €

attractor. The antiphase state exists in the region between lines | and ) ] ) ]
m FIG. 6. Evolution of(s) and o(s) for nonidentical oscillators

with the frequency differencA =0.03<A. in (a),(b) and with A

them first become positive and then decrease to negative vaI:-o'05>AC In (c)(d). Here the parameter=0.25 andN=6.

ues. Ate=0.023, the system enters a state with six positive
Lyapunov exponents and one zero-value Lyapunov exponen

This is quite far from the critical value 0.045 for the transi- When the inhomogeneity is increasedAo-0.05 [see Fig.

tion to the antiphase state. In fact, the antiphase phase Syg(c),(d)], (s) changes smoothly with the coupling strength

ggrnoenr:f:d chaotic state has only four positive Lyapunov €Xand neither sudden jumps nor a hysteresis loop appear. This

In Fig. 5, we plot the phase diagram on the parametemear.ls tha’g th_e a_ntiphase state survi\(es under We_ak_inhomo-
) . . . E;ene|ty while it disappears when the inhomogeneity is suffi-
plang @, €) for our six-oscillator system. In the construction ciently strong. Detailed numerical simulations show that on
pf this plot, for every value of the parametar we first increasing the inhomogeneity both the window of the phase-
increasee slowly with the stepse=0.001, and two values of

ded wh h dden i Th . h coherent state and the hysteresis loop gradually shrink their
€ are recorded w! er(es)_ as sudden jumps. They are Justthe o, o the critical value of the inhomogeneity beyond which
starting and ending points for the antiphase branch. Lines

and Il in the plot are formed by them. Then the values of 0 phase-coherent state appears is:0.04.

f dden i ; ith d . | ded Next we check whether the antiphase state still exists as
or sudden jumps nﬁs} with decreasing: are also recorded. ;o change the size of the chain. Numerical study shows that,
They are the end points for the in-phase branch continuin

Yhen the sizeN is decreased, the antiphase state appears for
from the completely synchronized state. They form line Il in . P PP

he plot. The th i di 0.021 which is th the lattice sizeN=4 and 5. FoN<3, it ceases to exist as
t _e'pot. e three INes lsgppearaa% : which is the g5 i Fig. Ta),(b). However, whenN is increased, the
critical value for the bifurcation from a phase-coherent to

" %ntiphase state disappears fo&N.~60. The evolution of
funnel attractor in an uncoupled Bsler oscillator. This im- P PP ¢

. : : . e variable(s) and o(s) for N=70 is shown in Fig.
Egizléza}tumzl ir;t(':ﬁg?csfs state exists only in a system (c),(d). Sudden jumps and hysteresis loops are not observed

here. The antiphase synchronized state, which is signaled by

a relatively large value in the mean distarsg and a small

IV. EFFECT OF THE INHOMOGENEITY value ino(s), is not expected here. According to these re-
AND THE LATTICE SIZE sults, we can say that the antiphase state exists only for in-

. . i termediate values of the lattice size.
In this section, we would like to test the robustness of the

antiphase state studied above. First, we check whether or not
an inhomogeneity in natural frequencieswill destroy this
state. To this end, the natural frequencies are seb;tol In this paper we have studied the antiphase state for a
+A¢& whereé; is a uniform random number in the interval chain of coupled funnel Rssler oscillators. Normally, the
[—0.5,0.5. The evolution of(s) ando(s) for the case with trajectory of a funnel attractor visits the origin frequently,
A=0.03 is shown in Fig. @&),(b). A similar structure as in which leads to 2r phase slips in the temporal evolution of
Fig. 2 (for instance, sudden jumps and the hysteresis loop ithe phase variable. If such funnel oscillators are coupled dif-

s)) can be clearly seen here. To guide the eyes, the window
f the phase-coherent state is marked by a line with arrows.

V. DISCUSSION AND CONCLUSIONS
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3X10° : : : . For the case of diffusively coupled small-amplitude oscil-
~ 2%10° Iato_rs near the H_opf bifurcation, Kuramoto arg_ued that an
% . antiphase state is possible when the effective coupling

1X10 among phase variables becomes repulfha]. It is not ex-

0 pected that the same mechanism works in the case we stud-
4X10° ied here. Our reasons are as follow$) In our case, the
3X10° amplitude plays an essential role since the funnel attractor is

=~ 2%10° rendered phase coherent under coupling. For the case studied
¥ 1x10° by Kuramato, the influence of coupling on the oscillator’s

0 amplitude is quite weak and using only phase variables is

enough to describe the dynamics of the coupled oscillators.
g%g ' ' ' ® ] In other words, the case studied by Kuramoto is the weak-

@ 4000 | 1 coupling regime while our case is far outS|d§ th_|s regif@e.
© 2000 |- 1 The size effect observed here does not exist in Kuramoto’s
0 . . . model. The antiphase state studied by Kuramoto survives at

the thermodynamic limit.
100 ' ' ' The size-dependent effect stated in Sec. IV can be viewed
. 28 i @ 7 in another way. We can consider only one unit in a system of
L g0t . N coupled oscillators while treating the impact from other

20 | ] units in the system as an environmental noise. This effective

% 0.05 ol 015 02 noise is expected to have a strength proportional tdN1/

e whereN is the size of the chain. In this sense, the appearance

of a self-organized antiphase state for only an intermediate
FIG. 7. Evolution of(s) and o(s) for coupled identical funnel  yalue of the chain size is a kind of stochastic resonance: The
oscillators with the chain sizBl=3 in (a),(b) and withN=70 in  antiphase state appears at an optimal value of the effective
(©),(d). Here the parameter=0.25. noise which corresponds to an optimal value of the system
sizeN. WhenN is quite large, the noise is too weak to trigger
fusively on a ring structure, an antiphase state appears whéhe antiphase state. However, fdrquite small, the noise is
the coupling strength is strong enough. In such a state, phas&ong in such a way that the ordered state is completely
differences between neighbor oscillators are of nearly condestroyed.
stant value Z-/N. The local dynamic on a single site changes
fror_n a funnel to a phase-coherent_attractor. However, this ACKNOWLEDGMENT
antiphase state cannot be found in a system of coupled
phase-coherent oscillators and is only expected for the funnel The author thanks A. Kenfack for careful reading of the

oscillator. paper.
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