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Phase synchronization of diffusively coupled Ro¨ssler oscillators with funnel attractors

H. L. Yang
Max-Planck-Institut fu¨r Physik Komplexer Systeme, No¨thnitzer Strasse 38, D-01187 Dresden, Germany

~Received 20 March 2001; published 17 July 2001!

Recently, anantiphasephase-synchronized state in a system of diffusively coupled Ro¨ssler oscillators has
been reported@Gang Huet al., Phys. Rev. Lett.85, 3377~2000!#. In the current paper this antiphase state is
explored in detail. Our interests are concentrated on the comparison with the normalin-phase phase-
synchronized state for phase-coherent oscillators and the effect of the lattice size. Our main results are that~i!
this antiphase synchronization is only for funnel Ro¨ssler attractors and cannot be observed in a system of
coupled phase-coherent oscillators;~ii ! it can be observed only for intermediate values of the lattice size while
it disappears for quite low or large values of the lattice size; and~iii ! it is different from the in-phase
phase-synchronized state of phase-coherent oscillators in many respects.

DOI: 10.1103/PhysRevE.64.026206 PACS number~s!: 05.45.2a
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I. INTRODUCTION

Chaos means that two trajectories starting from sligh
different initial conditions will separate exponentially as tim
goes on@1#. A fascinating recent finding is that trajectories
such wild chaotic systems can be synchronized if they
properly coupled together@2#. Initially, the main interest of
almost all researchers was focused on the case of cou
identical chaotic units@2–4#. Interesting phenomena such
on-off intermittency@3# and riddled basins@4# are found near
the transition to the synchronized state. Most recently,
case of coupled nonidentical units@5–8# has attracted the
attention of researchers due to the fact that parameter
matches and stochastic perturbations are inevitable in
physical experiments and technical applications. Amo
such work, Rosenblum, Pikovsky, and Kurths showed
effect of phase synchronization of weakly coupled se
sustained chaotic oscillators@7–9#. They generalized the
classic notion of phase locking for periodic oscillators a
defined phase synchronization for autonomous chaotic o
lators as the appearance of certain relations between
phases of interacting systems. This phenomenon has
extensively studied both theoretically and experimentally@9#.

Moreover @10#, Hu et al. reported a study of a chain o
diffusively coupled Ro¨ssler oscillators organized on a rin
structure. The phenomenon ofantiphasephase synchroniza
tion of chaotic oscillators was found. It is different from th
previously reported results@11# where only in-phasephase
synchronization was found for chaotic oscillators. In the c
rent paper, this antiphase phase synchronization for Ro¨ssler
oscillators is studied in detail and the results obtained
presented following this structure. In Sec. II, the model
coupled Ro¨ssler oscillators studied is presented. The in-ph
state for phase-coherent attractors and the antiphase sta
funnel attractors are shown. In Sec. III, the bifurcation to
antiphase state is characterized using both local and gl
variables. The relation with the Lyapunov exponent spectr
is also presented. A rough phase diagram is sketched. In
IV, the effects of the lattice size and the inhomogeneity
natural frequencies are studied. Finally, the paper is c
cluded with a short discussion.
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II. BASIC MODEL

A. The ring of oscillators

The model that we are interested in is a chain of dif
sively coupled Ro¨ssler oscillators on a ring structure. It ca
be written as a set of ordinary differential equations,

ẋi52v i yi2zi1e~xi 111xi 2122xi !,

ẏi5v ixi1ayi1e~yi 111yi 2122yi !, ~1!

żi50.41~xi28.5!zi1e~zi 111zi 2122zi !,

with xi 1N5xi , yi 1N5yi , zi 1N5zi . Herei 51, . . . ,N is the
index of the lattice site,v i is the natural frequency of an
individual oscillator, ande represents the coupling strengt
In the following, the lattice size is fixed asN56 and the
natural frequency is set tov i51 for i 51, . . . ,N except
where other values are explicitly mentioned.

The parameter setting used here is different from the
in Ref. @10#. We prefer this parameter setting because it
popularly used in the literature especially in the study of
phase synchronization of Ro¨ssler oscillators@7–9,11#. There-
fore, one can easily compare the present work with previ
work on phase synchronization and see the differences
connection among them.

B. Phase-coherent attractor and funnel attractor

The parametera determines the topology of the Ro¨ssler
attractor. In changing the value ofa, two kinds of attractor,
namely, phase-coherent and funnel attractors, can be
served~Fig. 1!. The critical value for the transition betwee
them is found to beac.0.21. Fora50.15,ac , the attractor
is oriented so that its projection on the plane (x,y) exhibits a
phase flow circulating around the origin. This is the pha
coherent attractor. Its phase can be simply defined as

f5arctan
y

x
. ~2!

Two such oscillators are said to be phase synchronize
their phases satisfy the condition limt→`uf i(t)2f j (t)u
,const.
©2001 The American Physical Society06-1
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When the parametera is larger thanac50.21, the topol-
ogy of the Ro¨ssler attractor becomes quite complex and
phase flow is no longer oriented. The phase for this fun
attractor cannot be simply defined as for a phase-cohe
attractor, but it is well known that for any autonomous sy
tem there exists a marginally stable variable correspondin
the zero-value Lyapunov exponent. In general this varia
can be viewed as the phase for the attractor of this auto
mous system although sometimes its value is difficult to
termine; for instance, for the funnel Ro¨ssler oscillator. Re-
cently a method for calculating the value of this pha
variable has been reported that does not depend on the t
ogy of the attractor@12#.

C. In-phase and antiphase states

The in-phase state for a chain of phase-coherent Ro¨ssler
oscillators is shown in Fig. 1~c! where all oscillators star
from random initial conditions. After a transient period, all
them approach a nearly identical phase value, i.e., w
uf i2f j u;0. The snapshot distribution of oscillators
highly localized in the phase space. As time increases,
localized cloud of phase points rotates around the origin
the plot, positions of oscillators are denoted by filled circ
while the attractor for the oscillator on sitei 51 is shown in
gray. The coupling strength used ise50.005. In comparing
to an uncoupled oscillator, no obvious change in the attra
for the oscillator on sitei 51 can be seen.

For a50.25, the chain of oscillators has an antiphase s
for the coupling strengthe in the interval@0.045,0.093#. The

FIG. 1. ~a! Phase-coherent attractor witha50.15 and~b! funnel
attractor witha50.25 in a single Ro¨ssler oscillator without cou-
pling. ~c! In-phase phase synchronized state for coupled ph
coherent oscillators witha50.15 and~d! antiphase phase synchro
nized state for coupled funnel oscillators witha50.25. Here
positions of oscillators are denoted by filled black circles and
attractor for the oscillator on sitei 51 is shown in gray.
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case shown in Fig. 1~d! is with e50.05. Starting from ran-
dom initial conditions and following transients, the oscill
tors self-organize into a state with a preferred phase lag
tween neighbor oscillators, i.e., withf i 112f i.2p/N.
Filled circles that denote oscillators’ positions span the wh
attractor. As time increases, this self-organized structure
tates around the origin while the phase lags among neigh
oscillators are kept nearly constant. In the plot, the attrac
for the oscillator on sitei 51 is shown in gray. Under cou
pling, it behaves like a phase-coherent oscillator and the
jectory avoids visiting the neighborhood of the origin.

III. BIFURCATION TO THE ANTIPHASE STATE

To characterize the change in the state of coupled osc
tors here, we define a quantity

s~ t !5H 1

N (
i 51

N

@~xi2 x̄!21~yi2 ȳ!21~zi2 z̄!2#J 1/2

~3!

with x̄5(1/N)( i 51
N xi , and so on. As a state of the couple

oscillators is represented by a phase point in
3N-dimensional phase space,s(t) can be viewed as the dis
tance from this point to the diagonalxi5xj , yi5yj , andzi
5zj for any i and j. The average valuês& and the standard
deviations(s) over a long trajectory will be used to distin
guish the in-phase and antiphase states. For an in-phase
chronized state, the difference between the states of osc
tors is relatively small and the average distance^s& is
expected to be small also. However, in the case of an
tiphase synchronized state, this average distance^s& be-
comes quite large due to the almost constant phase lag. F
completely desynchronized state, oscillators can occasion
aggregate together, which induces a relatively small value
s(t). They also have the chance to span the whole ph
space, which leads to a larges(t). This intermittency causes
^s&, for the desynchronized state, to take an intermed
value between those of the antiphase and in-phase states
standard deviations(s) is expected to be large here.

In Fig. 2, the evolution of̂ s& ands(s) with the coupling
strengthe and the bifurcation diagram for the variablex0 are
plotted. In order to trace the bistable branches, for ev
coupling the end state of the last coupling is used as
starting state for the current coupling. Results for increas
and decreasinge are shown in the same figure. Weak noise
used to destroy the unstable state. A large hysteresis loo
found for 0.057,e,0.093. This was studied thoroughly i
Ref. @10#. Here, we focus our attention on the bifurcation
the antiphase phase synchronized state. It can be seen
when e increases from zero,̂s& and s(s) decrease gradu
ally. This shows the trend to an in-phase synchronized s
as the coupling becomes stronger. At aboute.0.045, ^s&
suddenly jumps to a quite large value which correspond
the switch to the antiphase branch. The relatively small va
of s(s) implies that the degree of synchronization for t
antiphase state is higher than in the former in-phase bra

In Sec. II, we showed that in the antiphase synchroni
state a single oscillator behaves like a phase-coherent
although its parametera is in the funnel regime. Therefore,
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PHASE SYNCHRONIZATION OF DIFFUSIVELY . . . PHYSICAL REVIEW E64 026206
bifurcation in the local dynamic is expected on increasing
coupling strength. In Fig. 2~a!, the value ofx1 on the Poin-
caré intersectiony150 is plotted with increasinge. At e
.0.045, the one-band chaos suddenly shrinks in size
two-band one. This is coincident with the time for the sudd
jump in ^s&. This confirms our conjecture that there is
coupling-induced bifurcation from a funnel attractor to
phase-coherent one accompanying the transition to the
tiphase state.

A large peak ins(s) appears prior to the bifurcation t
the antiphase state. This is caused by the intermittency
companying the transition: Ase is slightly smaller than the
critical value 0.045, the chain of oscillators erratica
switchs between segments of in-phase states and antip
states~see Fig. 3!. In the in-phase segments,^s& takes a
relatively small value, the local dynamic for a single oscil
tor is a one-band chaos, and phase differencesf i2f i 11 be-
tween neighbor oscillators diffuse randomly. In the antiph
segments,̂ s& has a large nonzero value, the attractor fo
single site is a two-band chaotic one, and the phase di
encesf i2f i 11 stay almost constant. With increasing co
pling strength, antiphase segments appear more and m
frequently, and their average length diverges at the transi
to the antiphase state.

Now we study the Lyapunov exponent spectrum for
coupled oscillators on increasing the coupling strengthe.
The 12 largest Lyapunov exponents are plotted in Fig. 4.
e50, without coupling, six of them are positive and th
other six are zero corresponding to the free phases for
tonomous oscillators. For two coupled phase-coherent o
lators, the phase synchronization occurs at the moment w
one of the zero Lyapunov exponents becomes negative@7#.
This means that one of the phase variables is no longer
and is locked to another. If this picture is still correct for t

FIG. 2. Bifurcation diagram for the oscillator on sitei 51 with
~a! increasing and~b! decreasing coupling strengthe. Evolution of
the variableŝ s& ands(s) with e is shown in~c! and ~d!.
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coupled funnel oscillators studied here, we expect the
tiphase phase synchronization to happen when five of the
zero-value Lyapunov exponents become negative with o
one left. The synchronized state should be a hypercha
state with N positive Lyapunov exponents and one ze
Lyapunov exponent. Numerical calculation shows that this
not the case: With increasinge, some of the zero-value
Lyapunov exponents became negative gradually and som

FIG. 3. Temporal evolution of~a! the average distancês&, ~b!
the variablex1 for the oscillator on the sitei 51, and ~c! phase
differencesDf i ,i 11[f i 112f i . Here the coupling strength ise
50.0445.

FIG. 4. Lyapunov exponent spectrum for coupled funnel os
lators with increasing coupling strength. Heree1.0.023 ande2

.0.045.
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H. L. YANG PHYSICAL REVIEW E 64 026206
them first become positive and then decrease to negative
ues. Ate.0.023, the system enters a state with six posit
Lyapunov exponents and one zero-value Lyapunov expon
This is quite far from the critical value 0.045 for the trans
tion to the antiphase state. In fact, the antiphase phase
chronized chaotic state has only four positive Lyapunov
ponents.

In Fig. 5, we plot the phase diagram on the parame
plane (a,e) for our six-oscillator system. In the constructio
of this plot, for every value of the parametera, we first
increasee slowly with the stepde50.001, and two values o
e are recorded wherês& has sudden jumps. They are just t
starting and ending points for the antiphase branch. Lin
and III in the plot are formed by them. Then the values oe
for sudden jumps in̂s& with decreasinge are also recorded
They are the end points for the in-phase branch continu
from the completely synchronized state. They form line II
the plot. The three lines disappear ate.0.021 which is the
critical value for the bifurcation from a phase-coherent to
funnel attractor in an uncoupled Ro¨ssler oscillator. This im-
plies that the antiphase state exists only in a system
coupled funnel oscillators.

IV. EFFECT OF THE INHOMOGENEITY
AND THE LATTICE SIZE

In this section, we would like to test the robustness of
antiphase state studied above. First, we check whether o
an inhomogeneity in natural frequenciesv i will destroy this
state. To this end, the natural frequencies are set tov i51
1Dj i wherej i is a uniform random number in the interv
@20.5,0.5#. The evolution of̂ s& ands(s) for the case with
D50.03 is shown in Fig. 6~a!,~b!. A similar structure as in
Fig. 2 ~for instance, sudden jumps and the hysteresis loo

FIG. 5. Phase diagram for coupled Ro¨ssler oscillators. The
dashed line marks the transition from a phase-coherent to a fu
attractor. The antiphase state exists in the region between lines
III.
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^s&) can be clearly seen here. To guide the eyes, the wind
of the phase-coherent state is marked by a line with arro
When the inhomogeneity is increased toD50.05 @see Fig.
6~c!,~d!#, ^s& changes smoothly with the coupling strengthe
and neither sudden jumps nor a hysteresis loop appear.
means that the antiphase state survives under weak inho
geneity while it disappears when the inhomogeneity is su
ciently strong. Detailed numerical simulations show that
increasing the inhomogeneity both the window of the pha
coherent state and the hysteresis loop gradually shrink t
sizes. The critical value of the inhomogeneity beyond wh
no phase-coherent state appears isDc.0.04.

Next we check whether the antiphase state still exists
we change the size of the chain. Numerical study shows t
when the sizeN is decreased, the antiphase state appears
the lattice sizeN54 and 5. ForN<3, it ceases to exist a
shown in Fig. 7~a!,~b!. However, whenN is increased, the
antiphase state disappears forN>Nc.60. The evolution of
the variable ^s& and s(s) for N570 is shown in Fig.
7~c!,~d!. Sudden jumps and hysteresis loops are not obse
here. The antiphase synchronized state, which is signale
a relatively large value in the mean distance^s& and a small
value in s(s), is not expected here. According to these
sults, we can say that the antiphase state exists only fo
termediate values of the lattice size.

V. DISCUSSION AND CONCLUSIONS

In this paper we have studied the antiphase state fo
chain of coupled funnel Ro¨ssler oscillators. Normally, the
trajectory of a funnel attractor visits the origin frequent
which leads to 2p phase slips in the temporal evolution o
the phase variable. If such funnel oscillators are coupled

el
nd

FIG. 6. Evolution of^s& and s(s) for nonidentical oscillators
with the frequency differenceD50.03,Dc in ~a!,~b! and with D
50.05.Dc in ~c!,~d!. Here the parametera50.25 andN56.
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PHASE SYNCHRONIZATION OF DIFFUSIVELY . . . PHYSICAL REVIEW E64 026206
fusively on a ring structure, an antiphase state appears w
the coupling strength is strong enough. In such a state, p
differences between neighbor oscillators are of nearly c
stant value 2p/N. The local dynamic on a single site chang
from a funnel to a phase-coherent attractor. However,
antiphase state cannot be found in a system of cou
phase-coherent oscillators and is only expected for the fu
oscillator.

FIG. 7. Evolution of^s& ands(s) for coupled identical funnel
oscillators with the chain sizeN53 in ~a!,~b! and with N570 in
~c!,~d!. Here the parametera50.25.
J.

I.

V.
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For the case of diffusively coupled small-amplitude osc
lators near the Hopf bifurcation, Kuramoto argued that
antiphase state is possible when the effective coup
among phase variables becomes repulsive@13#. It is not ex-
pected that the same mechanism works in the case we s
ied here. Our reasons are as follows.~1! In our case, the
amplitude plays an essential role since the funnel attracto
rendered phase coherent under coupling. For the case stu
by Kuramato, the influence of coupling on the oscillato
amplitude is quite weak and using only phase variables
enough to describe the dynamics of the coupled oscillat
In other words, the case studied by Kuramoto is the we
coupling regime while our case is far outside this regime.~2!
The size effect observed here does not exist in Kuramo
model. The antiphase state studied by Kuramoto survive
the thermodynamic limit.

The size-dependent effect stated in Sec. IV can be view
in another way. We can consider only one unit in a system
N coupled oscillators while treating the impact from oth
units in the system as an environmental noise. This effec
noise is expected to have a strength proportional to 1/AN,
whereN is the size of the chain. In this sense, the appeara
of a self-organized antiphase state for only an intermed
value of the chain size is a kind of stochastic resonance:
antiphase state appears at an optimal value of the effec
noise which corresponds to an optimal value of the sys
sizeN. WhenN is quite large, the noise is too weak to trigg
the antiphase state. However, forN quite small, the noise is
strong in such a way that the ordered state is comple
destroyed.
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